طراحی سیستم خبره فازی برای تحلیل شکست‌های فرایند خرید در بیمارستان‌ بوعلی ساری

نوع مقاله: مدیریت سازمانی(چالشهای کسب وکار -اخلاق و مسولیت اجتماعی -تحول سازمانی - عملکرد سازمانی -ریسک)

نویسندگان

1 استادیار گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران

2 دانشجوی دکتری مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

چکیده

کاربرد گسترده فناوری­های پزشکی نیازمند صرف مقدار قابل توجهی از منابع در خرید تجهیزات و مواد می‌باشد. واضح است اگر فرایند خرید به درستی مدیریت نشود کمیت و کیفیت موارد خریداری شده با نیاز واقعی بیمارستان هماهنگی نخواهد داشت. از این رو برای جلوگیری از اتلاف منابع و هزینه و زمان، مقاله حاضر در صدد است با ارائه سیستم فازی به ارزیابی و اولویت‌بندی ریسک­های موجود در فرایند خرید بیمارستان دولتی­ بوعلی ساری بپردازد. در پژوهش حاضر ابتدا با مطالعه ادبیات موضوع و مصاحبه با خبرگان متخصص و آشنا به فرایند خرید بیمارستان، فهرستی از شکست‌های محتمل در فرایند خرید بیمارستان شناسایی شد. سپس از میان آنها، حساس‌ترین شکست‌ها از نظر میزان اهمیت و تاثیرگذاری‌شان با مصاحبه و نظرسنجی مجدد از خبرگان، استخراج شدند. عدد ریسک شکست هر یک از این شکست‌ها بر اساس رویکرد FMEA به دو صورت قطعی و فازی محاسبه شد. در روش فازی از سیستم خبره فازی برای ارائه مدل ارزیابی ریسک شکست استفاده گردید. بر اساس نتایج، مهمترین شکست‌ها در فرایند خرید بیمارستان بوعلی که باید بیش از پیش مورد توجه قرار گیرد عبارت است از:  شکست‌های" فقدان کالای موردنیاز در بازار "، " تاخیر در ارسال کالا " و " کسری کالاهای آنی ". بکارگیری سیستم استنتاج فازی علیرغم رتبه‌بندی ریسک‌های فرایند خرید، می‌تواند درک روشنی از هریک از ریسک‌ها با توجه به درجه عضویت مربوط به RPN فازی فراهم آورد. لذا با توجه به حساسیت فرایند خرید در بیمارستان‌ها، می‌تواند برای مدیریت بهتر خرید مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing the fuzzy expert system to analyze the failures of the purchasing process in BUALI hospital

نویسندگان [English]

  • Mohammad Valipourkhatir 1
  • narjes ghasemnia arabi 2
1 Assistant professor, Management department, Faculty of Economics and administrative Sciences, University of Mazandaran, Babolsar, Iran
2 PhD student, University of tehran, faculty of Management, Tehran, Iran
چکیده [English]

The widespread use of medical technology required a considerable amount of resources to be purchased for equipment. Obviously, if the process of purchasing is not properly managed the quantity and quality of these items will not be coordinated with the actual needs of the hospital. Therefore, to avoid wasting resources, money and time, the present article seeks to provide a fuzzy system to evaluate and prioritize the risks involved in purchasing of BUALI hospital.
In the present study, a list of possible failures was first identified by studying the subject literature and interviewing experienced experts. Then by more interviewing and examining the experts, the most critical failures were extracted from the list of failures in terms of their importance and their impact. The RPN of each failure was calculated based on the FMEA approach in both classic and fuzzy ways. In fuzzy method, the fuzzy expert system was used to provide a failure risk assessment model. According to the results, the most important failures in the BUALI hospital purchase process, which should be considered more than once, are: "lack of marketable goods", "delayed delivery of goods" and "instant goods deficit". Applying the fuzzy inference system, despite the risk rating of the purchasing process, can provide a clear understanding of each of the risks due to the degree of membership associated with the fuzzy RPN. Therefore, considering the sensitivity of the purchasing process in hospitals, it can be considered for better shopping management.

کلیدواژه‌ها [English]

  • Failure modes and effects analysis
  • The buying process
  • Fuzzy Inference System
  • FMEA

Abdelgawad M, Fayek AR. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management, 136(9), 1028-36.

Ahmadi M, Behzadian K, Ardeshir A, Kapelan Z. (2017). Comprehensive risk management using fuzzy FMEA and MCDA techniques in highway construction projects. Journal of Civil Engineering and Management, 23(2), 300-10.

Akhavan Saraf A, R, Nilforooshzadeh M. (2009). Determination of the failure factors of continuous improvement based on the hierarchical analysis process. Journal of Executive Management, 33(1), 13-36. (in Persian)

Arabsheybani, A., Paydar, M. M., & Safaei, A. S. (2018). An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier's risk. Journal of Cleaner Production, 190, 577-591.

Arunraj NS, Maiti J. (2010). Risk-based maintenance policy selection using AHP and goal programming. Safety science, 48(2), 238-47.

- Aslani, R., Feili, H., Javanshir, H.(2014). A hybrid of fuzzy FMEA-AHP to determine factors affecting alternator failure causes. Manage. Sci. Lett. 4 (9), 1981–1984.

Awad M, Awad M, As’ ad RA, As’ ad RA. (2016). Reliability centered maintenance actions prioritization using fuzzy inference systems. Journal of Quality in Maintenance Engineering, 22(4), 433-52.

Batbayar K, Takács M, Kozlovszky M. (2016). Medical device software risk assessment using FMEA and fuzzy linguistic approach: Case study. In Applied Computational Intelligence and Informatics (SACI), IEEE 11th International Symposium on 2016 May 12, 197-202.

Besterfield D, Besterfield M, Besterfield G.H, BesterfieldS M. (2003). Total  Quality Management. Pearson Education;  Inc.,  New  Jersey, 377–405.

Bowles JB, Peláez CE.(1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering & System Safety, 50(2), 203-13.‏

Chen, L., Deng, X., 2018. A modified method for evaluating sustainable transport solutions based on ahp and dempster–shafer evidence theory. Appl. Sci. 8 (4), 563.

Chin KS, Chan A, Yang JB. Development of a fuzzy FMEA based product design system. (2008) The International Journal of Advanced Manufacturing Technology, 36(7), 633-49.

Dağsuyu, C., Göçmen, E., Narlı, M., & Kokangül, A. (2016). Classical and fuzzy FMEA risk analysis in a sterilization unit. Computers & Industrial Engineering101, 286-294.

Efendigil T, Önüt S, Kahraman C. (2009). A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Systems with Applications, 36(3), 6697-707.

Guimarães AC, Lapa CM.(2004) Fuzzy FMEA applied to PWR chemical and volume control system. Progress in Nuclear Energy, 44(3), 191-213.

Guimarães AC, Lapa CM. (2007). Fuzzy inference to risk assessment on nuclear engineering systems. Applied Soft Computing, 7(1), 17-28.

Hernon, P. (2002). Quality: new directions in the research. The journal of academic librarianship28(4), 224-231.

Kandampully, J., & Duddy, R. (1999). Competitive advantage through anticipation, innovation and relationships. Management Decision37(1), 51-56.

Khasha, R., Sepehri, M., Khatibi, T., Soroush, A. (2013). Fuzzy FMEA Application to Improve Workflow in Operating Rooms. Journal of Industrial Engineering, 47(2), 135-147. doi: 10.22059/jieng.36171.(in Persian)

Kumar, S., DeGroot, R. A., & Choe, D. (2008). Rx for smart hospital purchasing decisions: The impact of package design within US hospital supply chain. International Journal of Physical Distribution & Logistics Management, 38(8), 601-615.

Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a public hospital. Applied Soft Computing13(1), 721-733.

Ilbahar, E., Karaşan, A., Cebi, S., & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety science, 103, 124-136.

Li, Z., & Chen, L. (2019). A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method. Engineering Applications of Artificial Intelligence, 77, 136-147.

Liu, H. C., L. Liu, and N. Liu. 2013. “Risk Evaluation Approaches in Failure Mode and Effects Analysis: A Literature Review.”Expert Systems with Applications 40 (2): 828–838.

Liu, H.-C., You, J.-X., Shan, M.-M., Su, Q. (2017). Systematic failure mode and effect analysis using a hybrid multiple criteria decision-making approach. Total Qual. Manage. Bus. Excell. 1–28.

Liu HT, Tsai YL. (2012). A fuzzy risk assessment approach for occupational hazards in the construction industry. Safety science, 50(4), 1067-78.

Liu, B., Hu, Y., Deng, Y., 2018b. New failure mode and effects analysis based on D numbers downscaling method. Int. J. Comput. Commun. Control 13 (2), in press.

Liu, H. C., Wang, L. E., Li, Z., & Hu, Y. P. (2019). Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE Transactions on Fuzzy Systems, 27(1), 84-95.

Maleki , A. R.,  Zohor , A. R., Ebadifard Azar , F., Rezaie , K. & Ebadian, M. (2010). An integrated approach in healthcare system in accordance with QFD/ FMEA . the journal of Payesh, 9(2), 117-130.(in persian)

Pillay A, Wang J.(2003). Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety, 79(1), 69-85.

Rafie M, Namin FS. (2015). Prediction of subsidence risk by FMEA using artificial neural network and fuzzy inference system. International Journal of Mining Science and Technology, 25(4), 655-63.

Sharma RK, Kumar D, Kumar P. (2005) Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modeling. International Journal of Quality & Reliability Management, 22(9), 986-1004.

Shafaat, A., Shami Zanjani, M. & Pilevari Salmani, N. (2012). Proposing a Model for the Evaluation of Knowledge Management Empowerment at the Pasargad Bank using the Fuzzy Inference System. Organizational Resources Management Researchs, 1(4), 1-191.(in persian)

Spath PL. (2013). Using failure mode and effects analysis to improve patient safety. AORN journal, 78(1), 15-37.

Su, C. T., H. C. Lin, P. W. Teng, and T. Yang. 2014. “Improving the Reliability of Electronic Paper Display Using FMEA and Taguchi Methods: A Case Study.” Microelectronics Reliability 54 (6-7): 1369–1377.

Tay K, Lim C. (2006). A Guided Rule Reduction System for Prioritization of Failures in Fuzzy FMEA. Applications of Soft Computing, 301-10.

Tsai, S. B., Zhou, J., Gao, Y., Wang, J., Li, G., Zheng, Y., ... & Xu, W. (2017). Combining FMEA with DEMATEL models to solve production process problems. PloS one, 12(8), e0183634.

UÇKUN, N., GİRGİNER, N., & ÇELİK, A. E. (2008). Usage of analytic hierarchy process in medical equipment purchasement decisions: a university hospital case. Elektronik Sosyal Bilimler Dergisi26(26).

Wang YM, Chin KS, Poon GK, Yang JB. (2009). Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert systems with applications, 36(2), 1195-207.‏

Withanachchi, N., Uchida, Y., Nanayakkara, S., Samaranayake, D., & Okitsu, A. (2007). Resource allocation in public hospitals: Is it effective?. Health Policy80(2), 308-313.

Xu K, Tang LC, Xie M, Ho SL, Zhu ML.(2002) Fuzzy assessment of FMEA for engine systems. Reliability Engineering & System Safety, 75(1), 17-29.

Yeh RH, Hsieh MH. (2007). Fuzzy assessment of FMEA for a sewage plant. Journal of the Chinese institute of industrial engineers, 24(6), 505-12.

Yousefi, S., Alizadeh, A., Hayati, J., & Baghery, M. (2018). HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: a study of automotive parts industry in Iran. Safety science102, 144-158.

Zanjirchi, M. & Sayadi Toranloo, H.(2010). Compliance and Routing Improving the Quality of Academic Library Services. Journal of Iranian Higher Education with FMEA approach, 2(4), 2010, 55-81.(in persian)

Zheng, H., Deng, Y., (2018b). Evaluation method based on fuzzy relations between dempster-shafer belief structure. Int. J. Intell. Syst. 33 (7), 1343–1363.